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Some iterative adaptive grid generators, developed by the author, are 
numerically explored in detail to assess their relative merits against 
conventional grid generators, based on a direct method of integration 
and interpolation. We find that some of these iterative adaptive grid 
generators are preferable to a direct method of integration and inter- 
polation In contrast with a direct method, appropriate use of these 
iterative adaptive grid generators produces adaptive grids with a 
smooth variation of the grid spacing ratio and resolution. All adaptive 
grid generators are a subclass of a more general iterative map. General 
features of this iterated map which are related to the function to be 
resolved are briefly discussed. The results obtained here supplements 
recent investigations on these adaptive grid generators by the author. 
0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Adaptive grids play an important role in constructing 
numerical solutions of a class of partial differential equa- 
tions (pdes) at an optimal computational cost [ 1-6, l&24]. 
The basic idea is to distribute a fixed number of grid points 
in a way that will capture the essential features of a function 
which usually has rapidly varying properties. Therefore 
some suitable strategy is required to construct such adaptive 
grids. Some of the properties which are desirable in an adap- 
tive grid are [7-91: (i) smooth variation of resolution and 
grid spacing ratio; (ii) the highest possible resolution in the 
regions of interest with a fixed number of total grid points; 
and (iii) a modest level of computational and algorithmic 
complexity. In order to generate such adaptive grids of 
“superior quality,” a new procedure based on approximate 
continuous descriptions of the grid spacing ratio was 
invoked in [7] (see also [8, 91). 

There were four main components in [7]: (i) derivation 
of some new adaptive grid generators based on a continuous 
description of the grid spacing ratio; (ii) analysis of these 
grid generators; (iii) construction of adaptive grids using 
these grid generators; and (iv) application of these adaptive 
grids. There, the purpose of constructing adaptive grids was 

to be able to assess the merits and to study the various 
properties of these grids. Ideally it is necessary to find an 
exact solution of the iterative map (Eq. (3.7)) which uses 
one of these grid generators. Since it is not possible to do so 
for an arbitrary adaptive function W(X) (see Eq. (2.1)), a 
numerical method was devised that will produce an almost 
exact solution. This numerical method was to use the 
iterated map recursively to generate the adaptive grid with 
a large number of grid points. (It is important to realize that 
the method requires a very good estimate of one of the 
unknown grid locations of the adaptive grid (see (3.7)) and 
this is possible only with a large number of grid points and 
it will not work for an arbitrary number of grid points. See 
the explanation following Eq. (6.1) in Section 6 of [7].) In 
[7], Figs. 1 through 5 were generated using this method. 
However, for the purpose of application it is important to be 
able to generate adaptive grids with an arbitrary number of 
grid points. In order to do so, an alternative method was 
devised which requires solving a set of coupled equations 
and it was briefly mentioned there (see Section 7 and Fig. 6 
in [7] or the statement following Eq. (3.7) of this paper). 

In [ 71, the following numerical issues have not been dealt 
with, which need to be addressed: (i) what are the difficulties 
with the direct methods (addressed in Section 2 and Fig. 3 
of this paper)?; (ii) what are the algorithms to generate the 
adaptive grids using the new grid generators (Section 4)?; 
(iii) how to solve the appropriate set of equations and 
what are the effects of various iterative methods such as 
Gauss-Seidel, Jacobi, SOR, etc. (Section 5)?; (iv) what are 
the effects of various free parameters on the properties of the 
adaptive grids (Figs. 4 through 9)?. The purpose of this 
paper is to provide answers to these questions through 
numerical experiments which have not been addressed 
earlier. Thus, the emphasis in this paper is to describe some 
practical algorithms, to discuss performance of various 
numerical methods, and to study the effect of various 
parameters on the grid properties. Such a detailed numeri- 
cal study is carried out here with a view toward possible 
applications in solving time-dependent partial differential 
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equations which exhibit singular or near-singular behavior. simplest of the adaptive grid generation methods, usually 
Some applications are given in [7]. has several disadvantages: 

In addition, this paper discusses resolution-based grid 
generators (Section 3.2) and general iterated maps as 
grid generators (Section 3.4 and Fig. 1). Thus this paper 
supplements as well as complements the author’s earlier 
work [7]. 

In Section 2, we discuss the main reasons behind develop- 
ing this new procedure. In Section 3, we briefly review some 
of the essential results from [7] which are required for 
further development of these results in this paper. In 
Section 4, we discuss various possible modifications to be 
invoked in the theory in order to devise practical algo- 
rithms. In Section 5, we discuss the numerical results and 
finally we conclude in Section 6. 

(i) It usually produces grids with oscillatory grid 
spacing ratio (see Fig. 3). Size of the oscillations depends on 
the number of adaptive grid points. This may unfavorably 
affect the spectral radius of the iteration matrix that arises in 
the numerical solution of time-dependent pdes and may 
cause convergence problems. Most of the methods in the 
literature [2&23] generate adaptive grids with scant regard 
to this grid smoothness property. This was the main reason 
behind generating the new methods [7] which we explore 
further in this paper. 

(ii) Since the functionf(x) has fast varying properties, 
either the integration procedure has to be adaptive or a 
large number of points will be required for this purpose. 

2. MOTIVATION 

Consider one-dimensional continuous invertible map- 
ping, given by 

xc = c(k) w(x; k) on x,<x<x,, (2.1) 

which maps the interval Q, in < space to the interval Sz, in 
the x space. Here and below xi = dxld[ and x5[ = d2x/di2. 
The uniformly spaced i-grid points (grid points on the [ axis 
will be referred as i-grid points) are mapped onto non- 
uniformly spaced x-grid points by this mapping which is 
referred to as an adaptive grid. In (2.1) k is a user-specified 
parameter, c(k) is a scaling constant, and w(x; k) is suitably 
chosen so that the adaptive grid captures the essential 
features of the functionf(w) (w(x; k) depends onf(x)). We 
denote by h, the spacing between two consecutive c-grid 
points and xi = x([;). Without any loss of generality we can 
take h, = 1 such that the grid indices form the c-coordinate 
system. Two important properties of an adaptive grid, 
resolution s(x) and the grid spacing ratio T(x;) are defined 
as 

s( x ) = d[/dx (2.2) 

and 

ri = xi+I-xi 

xi-Xi-,’ 

Note that resolution is the Jacobian of the mapping (2.1). 
A simple approach of generating an adaptive grid is by 
direct integration of (2.1), i.e., 

This second method (ii) bypasses the grid generation 

(2.3) procedure by the direct method and subsequent smoothing 
of the grid spacing ratio; it does not suffer from any of 
the shortcomings mentioned in the previous paragraph. In 
addition, this method provides increased flexibility in 
adjusting the maximum values of resolutions and grid 
spacing ratios for a fixed k and a fixed number of adaptive 
grid points (see Section 5 and also [7] ). 

on O<[dN, (2.4) 
It will be worthwhile to compare these new procedures 

and assess the relative advantages and disadvantages. In 
order to do so, we need the continuous description of the 
discrete grid spacing ratio (2.3). This has been derived in followed by interpolation. We shall refer to this method 

as the direct method. The direct method. conceivablv the 2 [7] which is reviewed briefly below. 
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(iii) Usually maximum resolution in this method is a 
slowly varying function of the number of grid points and the 
parameter k. If maximum resolution were a fast varying 
function of some suitable parameter, it would provide a 
way to obtain very high resolution in the areas of interest 
without changing the total number of grid points in the 
entire domain of computation. This flexibility may produce 
considerable savings in computational time in solving pdes 
without any loss in the maximum resolution of the function. 

The most undesirable factor of the direct method is the 
oscillations in the grid spacing ratio. Some of the procedures 
to eliminate these oscillations are the following: 

(i) Postprocessing of the grid spacing ratio to make it 
a smooth function and then to reconstruct the grids from 
this modified grid spacing ratio by some suitable procedure 
(see Section 4); the complete procedure involves generation 
of the adaptive grid by direct method, calculation of the grid 
spacing ratio, and subsequent smoothing to eliminate 
oscillations, and, finally, reconstruction of the adaptive grid 
from this smoothed grid spacing ratio; 

(ii) developing some approximate continuous descrip- 
tion of the discrete grid spacing ratio (2.3) and then using 
this to construct an adaptive grid. 
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3. BASIC THEORY 

3.1. Grid Spacing Ratio Based Grid Generators 

In [7], we proposed new procedures of adaptive grid 
generation based on the approximate continuous descrip- 
tions of the discrete grid spacing ratio (2.3). The basic idea 
is to use Taylor series expansions of x(c) in (2.3) with 
appropriate truncations depending on the order of accuracy 
desired. Some nontrivial manipulations may be required to 
get higher order accurate continuous descriptions of (2.3). 
Here we mention two second-order accurate continuous 
analogs of (2.3) which are given by (see [ 71) 

and 

R,(x) = 1 + u(x) (3.1) 

2 + m(x) 
R,(x) = ~ 

2 -cc(x)’ 

where a(x) is given by 

a(x) = h, -, 
Xi 

(3.2) 

and R, and R, are continuous representations of the dis- 
crete grid spacing ratio r(x). With mapping (2.1), Eq. (3.3) 
can be written as 

cr(x; k) = c(k) h[w,(x; k). (3.4) 

We take x0=x, and xN = x,, where N is the total number 
of intervals. Using Eqs. (3.1) to (3.4) we rewrite R,(x) and 
R,(x): 

R,(x) = 1 + c(k) w,(x; k) (3.5) 

and 

R,(x) = 
2 + c(k) w,k k) 
2 -c(k) w,(x; k)’ 

(3.6) 

In fact, a hierarchy of higher order methods can be 
devised, if so desired, by following similar procedures. In 
[7], we have derived a similar formula which is accurate to 
first-order approximation. 

Below R(x) refers, in general, to any appropriate con- 
tinuous approximation to (2.3) including R,(x) and R*(x). 
Having introduced this notation, the new grid generation 
equation, obtained by equating (2.3) and R(x), can be 
written as 

Xi+ 1 TX;+ (Xi-xx,_ 1) R(xi), i = 1, . . . . N- 1. (3.7) 

Thus knowing any two consecutive grid point values, (3.7) 
can be used to calculate all preceding and successive grid 
point values. In practice, however, only the boundary points 
x0 and xN of the domain 52, are known. Therefore, the con- 
struction of adaptive grids by the finite difference equation 
(3.7) would require solving a system of (N- 1)-coupled 
difference equations. 

In this procedure, the grid spacing ratio is a smooth func- 
tion by construction and the order of accuracy is implicit in 
the formulation. Also note that the adaptive integration 
and/or interpolation procedures of direct methods are not 
necessary. We should note that, in (2.1) and (2.4) c(k) is a 
scaling constant which is given by 

(3.8) 

It should be emphasized that the adaptive grid generated 
by (3.7) with R = R, or R, will be second-order accurate to 
the adaptive grid generated by the exact solution of (3.1) 
provided the value of the constant “c,” obtained from (3.8) 
is used in calculating R, and R,. However, the constant c in 
(3.5) and (3.6) can be allowed to be arbitrary at the loss of 
second-order accuracy when Eq. (3.7) is used for grid 
generation. As we will see, this extra degree of freedom 
provides some useful control over the grid attributes. In 
passing we should mention that with the number of grid 
points approaching infinity, the adaptive grid obtained from 
(3.7) will still converge to the exact solution given by (3.1) 
provided the constant c in (3.7) converges to the scaling 
constant (3.8). These remarks will have bearing when we 
devise the adaptive algorithms in Section 4. 

Equation (3.7) is a very simple looking grid generation 
equation for any user-specific choice of R(x), as long as it 
remains positive. Of course, R(x) must be properly chosen 
to obtain the desired adaptivity. Two such candidates 
as mentioned earlier are R, or R,. Choosing R(x) to be 
either R, and R, ensures the appropriate adaptivity, the 
appropriate order of accuracy, and the consistency with 
Eq. (2.1). In view of the grid generation equation (3.7), we 
may refer to R(x) as a grid generator. Though our study 
below will be restricted to these two grid generators, it is, 
however, not necessary to do so and one may use any 
suitable form of R(x) in (3.7). We generalize this concept in 
Section 3.4. 

3.2. Resolution Based Grid Generators 

It should be noted that discrete analogs of (2.2), which is 
more relevant here for computing discrete resolution, are 
given by [7] 

1 
ni = 

X IfI - Xi’ 
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to first-order approximation, and 

2 
ni = > (3.10) 

xi+l -Xi-] 

to second-order approximation, in the grid index space. 
Note that the resolution is a measure of concentration of the 
grid points. 

It should be noted that one can also devise methods based 
on resolution. In fact, by setting n, =3(x;) and using 
Eq. (2.1), (2.2), (3.9) and (3.10), one obtains the grid 
generation equations based on the resolution, 

-xi+ I =x, + cw(xj; k), i=O , . . . . N - 1, (3.11) 

to first-order approximation, and 

X If1 = xi- ] + 2cM(xi; k), i=l , . . . . N- 1, (3.12) 

to second-order approximation. Other equivalent 
approximations can also be devised and may be worth 
exploring. However, in our numerical study we will be 
interested in using (3.5) and (3.6) only as grid generators 
in (3.7). 

3.3. Selection of Parameters 

In general, it is a good idea to invoke some free 
parameters in the grid generator R(x) in (3.7). Then the 
properties of the adaptive grids generated by (3.7) can be 
easily controlled by adjusting these parameters. However, 
the parameters might have to be chosen carefully so that the 
mapping remains monotonic. To explain these in some 
detail, consider using R2(x), given by (3.6) as the grid 
generator in (3.7). We note that R2(x) depends on k which 
is an adjustable parameter. Thus the parameter k can be 
adjusted to control various properties of the adaptive grids 
[7]. Moreover, since R,(x) must be positive for monotonic 
mapping, we obtain from (3.6) that this is equivalent to 

Icw,(x; k)j < 2. (3.13) 

Similar constraints can be found using (3.5) when R, is 
used. This limits the choices for k. Of course, the admissible 
domain of k depends on the form of w(x; k) and the con- 
stant c. As mentioned earlier, the constant c in R,(x) can be 
chosen arbitrarily. One appropriate choice could be the 
scaling constant (3.8). Note that the values that can be 
assigned to the constant c must also satisfty (3.13). 

This increased flexibility in adjusting the constant c 
allows one to generate grids with different resolutions and 

581/100/Z-6 

grid spacing ratios keeping the number of grid points N and 
the parameter k fixed. As we will see in the next section, with 
a small number of grid points and with c(k) given by (3.8), 
the adaptive grid obtained has poor resolution. This situa- 
tion improves greatly upon adjusting the constant c with N 
and k fixed. It must be noted that the parameter k also 
affects these properties of the adaptive grid. In connection 
with the variation of grid properties with “cl’ we should note 
the following useful results. 

PROPOSITION 3.1. The grid spacing ratio R(x; k, c) is an 
increasing (decreasing) function of c if R > 1 (R < 1). 

Proof: It follows upon differentiation of (3.5) and (3.6) 
with respect to c. 1 

From this proposition, it also follows that R,,, (R,,,) is 
an increasing (decreasing) function of c if R,,, > 1 
(Rmin G 1). 

We would like to note the variation of extremal values of 
resolution observed numerically, as a following proposition 
(see Section 4). 

PROPOSITION 3.2. The maximum (minimum) resolution 
is an increasing (decreasing) function of c. 

Many other such useful results may be found in [7]. 

3.4. Iterated Map as a Grid Generator 

In general all grid generators, including the ones men- 
tioned in this section, can be embodied within a general 
iterated map, 

xi+1 = W;, x, , ), (3.14) 

where h(xj, xi- 1) is a suitable mapping function. This map- 
ping function depends on two grid points, since this map- 
ping for grid generation must conform to the two specified 
values of x,, and xN, where N, the number of grid intervals, 
is user-specified. Without any loss of generality we take, as 
before, x,=0 and x,= 1. In (3.14) h( , ) depends on two 
consecutive grid points. However, this can be further 
generalized by letting it depend on any two arbitrary grid 
points. 

Constructing an appropriate h( , ) in (3.14) and then 
using it to generate the set of points {xi} are the main 
problems in adaptive grid generation. Intuitively, h( , ) 
should generate a large concentration of grid points where 
the function f (x) needs to be resolved most. In other words, 
the major dynamics of the map (3.14) should take place in 
such critical regions. This should be the basic guideline 
behind choosing the map h( , ) even in an ad hoc manner. 
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0.495 0.50 0.505 

FIG. 1. Iterative map of a one-dimensional adaptive grid generator. 
The iterative map shown here corresponds to alg-II with R = R,, c = 0.4, 
k=l.andN=lOO. 

To gain further insight into this, we next consider the 
example of the previous section from the viewpoint of this 
iterated map. This viewpoint may help in generating 
adaptive grids without any recourse to pde formulation as 
in here. 

Note that the grid generation equation (3.7) can be 
written as (3.14) with h( , ) given by 

h(Xi, xi&i)=xi(l +R(x,))-R(x;)x,P,. (3.15) 

An adaptive grid can be generated by first knowing the two 
initial grid points: x0 and x,. We take x,, = 0. Use of any 
arbitrary guess for xi in (3.15) will in general not produce 
x,,, = 1. This can be made very precise as follows. From the 
grid generation equation (3.7) we have 

xi+l = x; + R(xJ(x; - Xj& ,) 

=xj+R(Xi)R(x,~,)(Xi-l-X,~*) 

=x,+x, lj R(x,). (3.16) 
n=l 

By induction, from (3.16) we obtain 

I i 

xi+l =x1 c n Wx,), (3.17) 
j=O n=l 

1.2 
T (4 

0.8 

f(x) 
0.4 

0.0 I-J 
-0.2 1 

0 0.2 0.4 0.6 0.8 1.0 

x 

FIG. 2. Function (5.2) in physical space. 

which in turn implies 

N-1 j 

xN=xl 1 n R(xn). (3.18) 
,=o n=l 

With xN = 1, the x1 must be correctly selected so that (3.18) 
is satisfied. Since it is difficult to make an exact initial guess 
of xi, the grids have to be generated in an iterative manner 
(see next section). 

In Fig. 1 we show the iterated map (3.15) corresponding 
to the functionf(x) shown in Fig. 2. This is generated by the 
method mentioned in the next section. Note that the major 
dynamics of the iterated map takes place in the region with 
major features in the function f(x). This region is shown 
within the square box in Fig. la. Hardly much can be 
inferred from this. Subsequent blowups in Figs. lb-d con- 
vey the levels of refinement in the grid size that is achievable 
under the simple dynamics of (3.15). Due to the severe non- 
linearity in h( , ), nonuniqueness in the adaptive grid cannot 
be ruled out. 

This study should suggest that an ad hoc procedure for 
generating adaptive grids can easily be set up for any com- 
plicated function by selecting the function h( , ) with the 
following properties: h( , ) should be essentially parallel to 
the diagonal in Fig. 1 except for sudden dips in regions 
where the function has essential features. However, h( , ) 
should not intersect the diagonal in Fig. 1, so that the 
mapping remains one-to-one. 

4. NUMERICAL METHOD 

In this section we describe practical algorithms to 
generate adaptive grids using our grid generators. We use 
grid generation equation (3.7) and we take x0 = 0, xN = L 
without any loss of generality. The (N- 1) coupled dif- 
ference equations (3.7) are denoted by 

X=AX+F, (4.1) 
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where 5. NUMERICAL STUDY 

x= (Xl, x2, x3, . . . . xN-l)T, 
F= (0, 0, 0, . . . . 0, L)T 

and A is a tridiagonal matrix with 

Aji= -r(x,), Aj,iL 1 =r(xj), Ajj+, = 1. 

The matrix equation (4.1) can be rewritten as 

QX= F, (4.2) 

where Q = Z- A is a diagonally dominant matrix. Equa- 
tions (3.7) and (4.2) are nonlinear due to the dependency of 
the matrices A and Q on the unknown solution vector X. 
Equation (4.2) can be solved by various iterative methods 
to be discussed shortly. 

The algorithm for generating adaptive grids can be made 
very simple. We briefly describe two algorithms based on 
how the constant c (see (3.5), (3.6)) is set during the 
iterations. As mentioned earlier, the user has flexibility in 
adjusting the value of c, k, and N. 

ALGORITHM I. Initially the grid point coordinates are 
guessed and then these values are updated by solving (4.2) 
in an iterative loop until some convergence criterion is met. 
In each iteration, the value of c is updated by using the 
following formula: 

c(k) = j-1 --&. (4.3) 

This is obtained by integrating (2.1) up to the first adaptive 
grid point. Note that this is equivalent to (3.8). Henceforth 
we shall refer to the method using this algorithm with 
R = R, or R = R, as alg-I(R,) and alg-I(R,), respectively. 

ALGORITHM II. This is same as Algorithm I except that 
the value of c is kept constant at a user-specified value 
during the iterations. The values which the constant “c” can 
assume have inherent limitations as discussed earlier. There- 
fore the constant c cannot be set arbitrarily, otherwise the 
iteration will not converge. A practical guide to select c is 
given later in Section 5. Henceforth we shall refer to these 
algorithms using R= R, or R= R, as alg-II and 
alg-11( R2), respectively. 

It must be stressed at this point that some care should 
be exercised in selecting the criterion for convergence; 
otherwise the error in the grid location can be more than the 
smallest size of the adaptive grid which is not known a 
priori. One can dynamically set it, say at 1 % of the smallest 

The numerical study is aimed at comparing the various 
methods (direct, alg-I(R,), alg-I(R,), alg-II( and 
alg-11( R2). Though our calculations have been extensive, we 
present only a few results for the sake of brevity. 

In this section we present numerical results for a typical 
model problem. In the numerical experiments below, we use 
the first derivative adaptive function: 

w(x; k) = (k +fZ,)-‘12. (5.1) 

In (5.1), f(x) is the function to be resolved and the 
parameter k is a user-specified parameter. The value of k 
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FIG. 3. Effect of adaptive and nonadaptive integration on the resolu- 
tion (n) and grid spacing ratio (R) in the direct method: Figures (a) and 
(b) show the effect of nonadaptive integration (N = 100); (c) and (d) show 
the effect of adaptive integration (N= 100); (e) and (f) show the effect of 
adaptive integration with a large number of adaptive grid points 
(N= looo) grid spacing of the current iteration level. 
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should be chosen carefully (see also [7]). From (5.1) we 
find that w(x; k) z l/3. m re ions wheref(x) is nearly con- g’ 
stant and w(x; k) x l/If’1 in regions of rapid variation in 
f(x). This and the mapping xy = cw(x; k) imply that grid 
concentration will decrease with decreasing k in regions 
where the function is essentially constant. Thus smaller 
values of k will provide better resolution for a fixed number 
of grid points. However, k cannot be chosen small enough 
to violate (3.8). Usually, k is chosen to be one in most 
practical instances. More elaborate analysis in this regard 
can be found in [7]. 

As a test case, we consider the function 

f(x)= [l +sgn(x-x,.)(1 -exp(-aX’+$)}]/2, (5.2) 

where X= l/m + Jx - x,. 1, a = 2000, x,. = i, sgn(x - xc) 
= 1 if x > x,. and sgn(x - x,.) = - 1 if x < x,.. This function 
is shown in Fig. 2. The Gaussian term contributes smooth 
but rapid variation for the function values in the vicinity of 
the center of the domain. The higher the value of a in (5.2), 
the steeper the function is. 

To explore the “worthiness” of the new grid generators 
based on the grid spacing ratio, we generate the adaptive 
grids by various methods. Figure 3 shows the adaptive grid 
properties generated by the direct method. Nonadaptive 
integration of (2.4) produces oscillations (Fig. 3b) which are 

partially eliminated by adaptive integration (Fig. 3d). (In 
Figs. 3a through 3d, the number of adaptive grid points is 
100. The number of grid points used in the integration is 100 
for Figs. 3a through 3d and 1000 for Figs. 3e and 3f.) 
However, with a large number of adaptive grid points, 
oscillations still persist, even after the integration is carried 
out with a large number of grid points (see Fig. 3f). 

In Fig. 4 we show the adaptive grids obtained with 
alg-I(R = R2) and N= 100. Resolution and grid spacing 
ratios are seen to be smooth functions. (We should recall 
that this non-oscillatory behavior is implicit by construc- 
tion.) Note that resolution and grid spacing ratios are 
relatively insensitive to the value of k used. Comparing with 
the direct method, we see that by switching from direct to 
iterative alg-I(R = R2), there is a loss of maximum resolu- 
tion at the gain of no-oscillation in R. 

Neither of these methods offer the ideal combination: 
very high resolution and non-oscillatory grid spacing ratio. 
A remedy to this situation is to allow “c” in alg-I to be user- 
specified, i.e., to use alg-II. In Fig. 5, we show that the effect 
of varying the constant “c” on the grid properties for fixed 
k = 1. Note that a drastic gain in the maximum resolution 
can be obtained by this simple strategy. Curves I in Fig. 5 
are essentially the ones close to the results obtained using 
alg-I (see Fig. 4). Increasing the value of “6’ increases the 
resolution and grid spacing ratio. In alg-II, we can also 
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allow k to vary. The results of such a study are shown in 
Fig. 6. We find that better resolution is obtained with 
smaller values of k. 

From Fig. 5 and 6, we note that an increase in “c” has the 
same effect as a decrease in k on the properties. Therefore, 
the effect of an increase in k can be canceled by decreasing 
c by an appropriate value, thereby producing marginal 
changes in the grid properties. This is what happens in alg-I 
(see Fig. 4). There the constant c, computed by (4.3), is an 
increasing function of k due to Eq. (5.1) (see Fig. 7). 

Figure 8 compares the effect of k in these three methods. 
For alg-II(R = R2), we have used c=O.O4. Note that the 
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FIG. 8. Effect of k: (a) extremal values of grid spacing ratio r; 
(b) extremal values of resolution n: Curves D, I, II refer to the methods 
Direct, alg-I(R = R,), and alg-II(R = R,) with c = 0.04, respectively. The 
in-between curve in the lower branch is by the Direct method (not lettered 
above). 

minimal values of resolution and grid spacing ratio are 
insensitive to the value of k and also to these methods. In 
contrast, the maximal values of these properties are sen- 
sitive to both the methods and the value of k (at least for 
k < 0.) The parameter k is commonly chosen to be one in 
the direct method. Note that with the same value of k, alg-II 
with c = 0.04 gives almost a twofold increase in resolution 
(Fig. 8a). This implies that for the same resolution, the num- 
ber of adaptive grid points required will be less in alg-II than 
in the direct method. This will entail considerable savings in 
numerical solution of time-dependent problems, where the 
adaptive grids will be required at each time level. 

In Fig. 9 we show the effect of varying “c” in alg-II on 
extremal values of the resolution and grid spacing ratio. 
There is usually an upper bound on “c,” beyond which 
R < 0 (see Fig. 8b and (3.13)) and, hence, alg-II will not 
work. In spite of this limitation, alg-II can be preferable to 
the direct method for reasons mentioned above. 

Although, the above conclusions hold in general for all N, 
the relative degree of advantages and disadvantages are 
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FIG. 9. Effect of the constant c in alg-II(R = R2): Maximum and mini- 
mum values of grid spacing ratio “r” and resolution “n” as functions of the 
scaling constant “c” with N = 100 and k = 1. Upper branch (lower branch) 
corresponds to maximum (minimum). 
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N-dependent because the constant c in alg-I depends on N 
(see Fig. 7b). To assess this quantitatively, we define the 
relative resolution in the following way: 

fi = (nJn,). 

Here n, is the resolution with uniform grid spacing and ni is 
the resolution with an adaptive grid at location “t’ in the 
index space. Note that extremal values of fi depend on N 
and, hence, they are a good basis for comparing the useful- 
ness of adaptive grids for various N. In Fig. 10 we show this 
within a moderate domain of N, normally used for adaptive 
grid generation. 

Some comments on the iterative schemes that we have 
used in solving (4.2) should be made. The convergence rates 
of the iterative schemes may depend on the number of grid 
points, the type of the iterative methods used, the initial 
guess of the adaptive grid, and the values of the flexible 
parameters, c and k. From our extensive numerical 
experiments we draw some general conclusions in these 
matters. 

We find that the convergence rate for iterative schemes 
using Gauss-Seidel and red-black Gauss-Seidel methods 
were, in general, better than SOR and Jacobi methods. In 
fact, we find that the 1, and I, error norm curves for 
Gauss-Seidel and red-black Gauss-Seidel methods are 
identical, for all practical purposes. The SOR method does 
not do as well as these methods. A multigrid method can be 
used to accelerate the convergence rates. In our numerical 
study, the initial grid in the iterative schemes was either a 
uniformly spaced grid or the adaptive grid obtained from a 
direct method using nonadaptive integration. The number 
of iterations required in the second case were less than in the 
first case. 

We find that the effect of variations of k on the con- 
vergence rate is very mild. In contrast, the effect of varia- 
tions of c on the convergence rate is dramatic. In general, 
the number of iterations is large for smaller values of c and 
is small for larger values of c. Fortunately, this scenario is 

N N 

FIG. 10. Effect of N on extremal values of grid spacing ratio “r” and 
relative resolution “A” in the direct method (D), the alg-I(R = R2), and 
alg-II(R = R2) with k = 1. Upper branch (lower branch) corresponds to 
maximum (minimum) in each of the methods. 

tolerable, since the maximal value of resolution is usually a 
monotonic function of c (see Fig. 9). 

So far in this section we have presented results that sup- 
port the use of alg-II(R = R2) for adaptive grid generation. 
However, for successful adaptive grid generation by this 
method, it should be clear that one needs to select the values 
k and c carefully. We recommend using small values for k, 

roughly in the range of 0.2 to 0.5. However, for c, the largest 
possible value should be selected so that (3.2) is satisfied. (In 
other words, as long as grid spacing ratio remains positive.) 
This can, of course, be calculated using (3.2). However, one 
can safely avoid this and use the following procedure: use 
alg-I initially for a few iterations and, once the convergence 
rate slows down, switch to alg-II with the value of c equal 
to a constant. 

6. CONCLUSION 

A new set of iterative adaptive grid generators have been 
introduced. We have rigorously carried out numerical 
experiments with some of these, while other generators can 
also be tested similarly to assess their “worthiness.” Some 
applications of these adaptive grid generators in solving 
time-dependent pdes are given in [7]. 

We should note that there are many other types of adap- 
tive grid generators which I have not mentioned here. There 
is a growing interest in generating adaptive grids which will 
suit specific needs. Here we have devised some spacing- 
ratio-based generators and some iterative approaches to 
constructing the grids using these. Some essential numerical 
studies have been carried out to illustrate the strengths and 
weaknesses of these approaches. 
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